Liouville type theorems for axially symmetric Navier-Stokes equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liouville type of theorems with weights for the Navier-Stokes equations and the Euler equations

We study Liouville type of theorems for the Navier-Stokes and the Euler equations on R N , N ≥ 2. Specifically, we prove that if a weak solution (v, p) satisfies |v| 2 +|p| ∈ L 1 (0, T ; L 1 (R N , w 1 (x)dx)) and R N p(x, t)w 2 (x)dx ≥ 0 for some weight functions w 1 (x) and w 2 (x), then the solution is trivial, namely v = 0 almost everywhere on R N × (0, T). Similar results hold for the MHD ...

متن کامل

Liouville type of theorems for the Euler and the Navier-Stokes equations

We prove Liouville type of theorems for weak solutions of the Navier-Stokes and the Euler equations. In particular, if the pressure satisfies p ∈ L1(0, T ;H1(RN )), then the corresponding velocity should be trivial, namely v = 0 on RN × (0, T ), while if p ∈ L1(0, T ;L1(RN )), then we have equipartition of energy over each component. Similar results hold also for the magnetohydrodynamic equations.

متن کامل

Liouville Theorem for 2d Navier-stokes Equations

(One may modify the question by putting various other restrictions on (L); for example, one can consider only steady-state solutions, or solutions with finite rate of dissipation or belonging to various other function spaces, etc.) We have proved a positive result for dimension n = 2 which we will discuss below, but let us begin by mentioning why the basic problem is interesting. Generally spea...

متن کامل

A Sufficient Condition of Regularity for Axially Symmetric Solutions to the Navier-Stokes Equations

In the present paper, we prove a sufficient condition of local regularity for suitable weak solutions to the Navier-Stokes equations having axial symmetry. Our condition is an axially symmetric analog of the so-called L3,∞-case in the general local regularity theory. 1991 Mathematical subject classification (Amer. Math. Soc.): 35K, 76D.

متن کامل

Optimization with the time-dependent Navier-Stokes equations as constraints

In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SCIENTIA SINICA Mathematica

سال: 2021

ISSN: 1674-7216

DOI: 10.1360/ssm-2020-0179